Sains Malaysiana 53(5)(2024): 1043-1054
http://doi.org/10.17576/jsm-2024-5305-06
Evaluation of the
Bacteriophage MAC-1 Potential to Control Pseudomonas
aeruginosa Planktonic Cells and Biofilms
(Penilaian Potensi Bakteriofag MAC-1 untuk Mengawal Sel Plankton Pseudomonas aeruginosa dan Biofilem)
MOAZ AQEEL1, SAYED MUHAMMAD ATA ULLAH SHAH BUKHARI2,
HIDAYAT ULLAH5, TAHIR HUSSAIN3, AMAN ULLAH2, MUHSIN JAMAL3,*, MUHAMMAD ASIF NAWAZ4, SAADIA
ANDLEEB1, KHURSHAID KHAN5, SIDRA PERVEZ6 & MUHAMMAD IMRAN7
1Atta-ur-Rahman School of Applied
Biosciences, National University of Sciences and Technology, Islamabad-44000,
Pakistan
2Department of
Biological Sciences, National University of Medical Sciences, Rawalpindi-46000,
Pakistan
3Department of Microbiology, Abdul Wali Khan
University, Mardan -23200, Pakistan
4Department of Biotechnology,
Shaheed Benazir Bhutto University, Sheringal, Dir
(Upper), Pakistan
5Department of Zoology, Abdul Wali Khan
University, Mardan -23200, Pakistan
6Department of
Biochemistry, Shaheed Benazir Bhutto
Women University, Peshawar-25000, Pakistan
7Department of
Microbiology, University of Health Sciences, Lahore -54600, Pakistan
Received: 20 April
2023/Accepted: 19 March 2024
Abstract
Pseudomonas
aeruginosa is a pathogenic bacterium that can be
considered a high risk to human health due to its remarkable capacity to resist
antibiotics, either intrinsically or following the acquisition of resistance
genes. P. aeruginosa has been considered a major threat to human health as all the known
remedies seem ineffective. Bacteriophages as a natural killer of bacteria can
offer alternative therapy for antibiotics. The study aimed to isolate and
characterize a lytic bacteriophage against P.
aeruginosa (clinically resistant strain/superbug)
and to investigate its lytic potential to control bacterial planktonic cells
and their biofilms on stainless steel surfaces. A lytic bacteriophage known as
MAC-1 was isolated from wastewater against the selected P. aeruginosa-2750 strain. Its host range was
moderate and it only infected six isolates. Phage MAC-1 was characterized
through transmission electron microscopy and was classified to the Siphoviridae family. It has good heat and pH stability. Its
latent time was 24 min with a burst size of about 410 virions per cell. The phage MAC-1 efficacy was determined against P. aeruginosa planktonic cells and biofilms on
metallic surfaces. Isolated phage MAC-1 demonstrated promising activity against
bacterial planktonic cells as well as in reducing bacterial biofilm biomass
formed in 96-well and on stainless steel plates. However, a phage cocktail may
be used to avoid resistance and ensure complete eradication of bacterial
biofilms.
Keywords: Bacteriophage; biofilm;
cocktail; planktonic cells; Pseudomonas aeruginosa
Abstrak
Pseudomonas aeruginosa ialah bakteria patogen yang boleh dianggap berisiko tinggi kepada kesihatan manusia kerana keupayaannya yang luar biasa untuk menentang antibiotik, sama ada secara intrinsik atau berikutan pemerolehan gen rintangan. P.
aeruginosa telah dianggap sebagai ancaman utama kepada kesihatan manusia kerana tidak menunjukkan kesan daripada semua ubat sedia ada. Bakteriofaj sebagai pembunuh bakteria semula jadi boleh menawarkan terapi alternatif untuk antibiotik. Kajian ini bertujuan untuk mengasingkan dan mencirikan bakteria lisis terhadap P. aeruginosa (superbug rintang klinikal) serta mengkaji potensi lisisnya untuk mengawal sel planktonik bakteria dan biofilemnya pada permukaan keluli tahan karat. Bakteria lisis yang dikenali sebagai MAC-1 telah dipencilkan daripada air sisa terhadap strain P. aeruginosa-2750 terpilih. Julat perumahnya adalah sederhana dan hanya menjangkiti enam pencilan. Faj MAC-1 telah dicirikan melalui mikroskop elektron transmisi dan dikelaskan kepada famili Siphoviridae. Ia mempunyai kestabilan haba
dan pH yang baik. Masa pendamnya ialah 24 minit dengan saiz letusan kira-kira
410 virion per sel. Keberkesanan faj MAC-1 ditentukan terhadap sel planktonik P.
aeruginosa dan biofilem pada permukaan logam. Faj terpencil MAC-1
menunjukkan aktiviti yang memberangsangkan terhadap sel planktonik bakteria dan
juga dalam mengurangkan biojisim biofilem bakteria yang terbentuk dalam plat
96-telaga dan pada plat keluli tahan karat. Walau bagaimanapun, koktel faj
boleh digunakan untuk mengelakkan kerintangan dan memastikan pembasmian lengkap
biofilem bakteria.
Kata kunci: Bakteriofaj; biofilem; koktel; Pseudomonas aeruginosa; sel planktonik
REFERENCES
Adnan, M., Shah, M.R.A., Jamal, M., Jalil, F., Andleeb, S., Nawaz,
M.A., Pervez, S., Hussain, T., Shah, I., Imran, M. & Kamil,
A. 2020. Isolation and characterization of bacteriophage to control
multidrug-resistant Pseudomonas aeruginosa planktonic cells and
biofilm. Biologicals 63: 89-96.
Akram, M., Shahid, M. & Khan, A.U. 2007. Etiology and antibiotic
resistance patterns of community-acquired urinary tract infections in JNMC
Hospital Aligarh, India. Annals of Clinical Microbiology and
Antimicrobials 6(1): 1-7.
Bobrov,
A.G., Getnet, D., Swierczewski,
B., Jacobs, A., Medina‐Rojas, M., Tyner, S., Watters, C. & Antonic, V. 2022. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military‐relevant animal infection
models. Acta Pathologica, Microbiologica, et Immunologica Scandinvica 130(7): 436-457.
Capra, M.L., Quiberoni, A. & Reinheimer, J. 2006. Phages of Lactobacillus casei/paracasei:
response to environmental factors and interaction with collection and
commercial strains. Journal of Applied Microbiology 100: 334-342.
Cerca, N., Oliveira, R.
& Azeredo, J. 2007. Susceptibility of Staphylococcus epidermidis planktonic
cells and biofilms to the lytic action of Staphylococcus bacteriophage K. Letters in Applied Microbiology 45: 313-317.
Chadha, J., Harjai, K.
& Chhibber, S. 2022. Revisiting the virulence
hallmarks of Pseudomonas aeruginosa: A chronicle through the perspective
of quorum sensing. Environmental Microbiology 24(6):
2630-2656.
Chang, R.Y.K., Nang, S.C., Chan, H.K. & Li,
J. 2022. Novel antimicrobial agents for combating antibiotic-resistant
bacteria. Advanced Drug Delivery Reviews 2022: 114378.
Chevallereau, A., Pons, B.J., van Houte, S. & Westra, E.R.
2022. Interactions between bacterial and phage communities in natural
environments. Nature Reviews Microbiology 20(1): 49-62.
Chhibber,
S., Kaur, T. & Kaur, S. 2014. Essential
role of calcium in the infection process of broad‐spectrum
methicillin‐resistant Staphylococcus aureus bacteriophage. Journal
of Basic Microbiology 54(8): 775-780.
CLSI.
2020. Performance
Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100.
Das, S. 2022. Genetic regulation, biosynthesis
and applications of extracellular polysaccharides of the biofilm matrix of
bacteria. Carbohydrate Polymers 2022: 119536.
Di Domenico, E.G., Oliva, A.
& Guembe, M. 2022. The current knowledge on the pathogenesis of
tissue and medical device-related biofilm infections. Microorganisms 10(7):
1259.
El-Telbany, M.,
Mohamed, A.A., Yahya, G., Abdelghafar,
A., Abdel-Halim, M.S., Saber, S., Alfaleh, M.A.,
Mohamed, A.H., Abdelrahman, F., Fathey,
H.A. & Ali, G.H. 2022. Combination of meropenem and zinc oxide nanoparticles; Antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy
against bacterial keratitis. Antibiotics 11(10): 1374.
Figaj, D., Ambroziak, P., Rzepka, I. & Skórko-Glonek, J. 2023. SurA-like
and Skp-like proteins as important virulence
determinants of the Gram-negative bacterial pathogens. International
Journal of Molecular Sciences 24(1): 295.
Fu, W., Forster, T., Mayer, O., Curtin, J.J., Lehman, S.M. & Donlan, R.M. 2010. Bacteriophage cocktail for the
prevention of biofilm formation by Pseudomonas
aeruginosa on catheters in an in vitro model system. Antimicrobial Agents and
Chemotherapy 54(1): 397-404.
Gill, J.J. & Hyman, P. 2010. Phage choice,
isolation, and preparation for phage therapy. Current Pharmaceutical
Biotechnology 11(1): 2-14.
Groleau,
M.C., Taillefer, H., Vincent, A.T., Constant, P.
& Déziel, E. 2022. Pseudomonas aeruginosa isolates defective in function of the LasR quorum
sensing regulator are frequent in diverse environmental niches. Environmental
Microbiology 24(3): 1062-1075.
Hyman,
P. & Abedon, S.T. 2010. Bacteriophage
host range and bacterial resistance. Advances in Applied Microbiology 70:
217-248.
Jamal, M., Andleeb, S., Jalil, F., Imran,
M., Nawaz, M.A., Hussain, T., Ali, M. & Das, C.R. 2017. Isolation and characterization of a bacteriophage and its utilization against
multi-drug resistant Pseudomonas aeruginosa-2995. Life Sciences 190:
21-28.
Jamal, M., Chaudhry,
W.N., Hussain, T., Das, C.R. & Andleeb, S. 2015a. Characterization of new Myoviridae bacteriophage
WZ1 against multi‐drug resistant (MDR) Shigella dysenteriae. Journal of Basic
Microbiology 55(4): 420-431.
Jamal,
M., Hussain, T., Das, C.R. & Andleeb, S. 2015b. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. Journal of Medical Microbiology 64(4):
454-462.
Jamal,
M., Hussain, T., Das, C.R. & Andleeb, S. 2015c. Isolation and characterization of a Myoviridae MJ1 bacteriophage against multi-drug
resistant Escherichia coli 3. Jundishapur Journal of Microbiology 8(11): e25917.
Jamal, M., Hussaina, T., Dasb, C. & Andleeba, S. 2015d. Inhibition of clinical multi-drug resistant Klebsiella pneumoniae biofilm by Siphoviridae bacteriophage Z. Science
Letter 3(2): 122-126.
Jamal, M., Tasneem, U., Hussain, T. & Andleeb,
S. 2015e. Bacterial biofilm: Its composition in formation and
role in human infections. Research & Reviews: Journal of Microbiology
and Biotechnology 4(3): 1-14.
Jeon, J., Park, J.H. & Yong, D. 2019. Efficacy of
bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse
model of acute pneumonia. BMC Microbiology 19(1): 70.
Karaca, B., Akcelik, N. & Akcelik, M.
2015. Effects of P22 bacteriophage on Salmonella enterica subsp. enterica serovar Typhimurium DMC4 strain biofilm formation and
eradication. Archives of Biological Sciences 67(4): 1361-1367.
Karley, D., Shukla, S.K. & Rao, T.S. 2022.
Microbiological assessment of spent nuclear fuel pools: An in-perspective
review. Journal of Environmental Chemical Engineering 10(4):
108050.
Labrie, S.J., Samson, J.E.
& Moineau, S. 2010. Bacteriophage resistance
mechanisms. Nature Reviews Microbiology 8(5): 317-327.
Larson,
E.L., Gomez-Duarte, C., Lee, L.V., Della-Latta, P., Kain, D.J. & Keswick, B.H. 2003. Microbial flora of
hands of homemakers. American Journal of Infection Control 31(2):
72-79.
Latino, L., Midoux,
C., Hauck, Y., Vergnaud, G. & Pourcel,
C. 2016. Pseudolysogeny and sequential mutations
build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa. Microbiology 162(5): 748-763.
Lin,
J., Du, F., Long, M. & Li, P. 2022. Limitations of phage therapy and corresponding
optimization strategies: A review. Molecules 27(6): 1857.
Martins, W.M., Li, M., Sands, K., Lenzi, M.H., Portal, E., Mathias, J., Dantas,
P.P., Migliavacca, R., Hunter, J.R., Medeiros, E.A.
& Gales, A.C. 2022. Effective phage cocktail to combat the
rising incidence of extensively drug-resistant Klebsiella pneumoniae sequence type 16. Emerging
Microbes and Infections 11(1): 1015-1023.
Noritomi, H., Kai, R., Iwai,
D., Tanaka, H., Kamiya, R., Tanaka, M., Muneki, K. & Kato, S. 2011. Increase in thermal
stability of proteins adsorbed on biomass charcoal powder prepared from plant
biomass wastes. Journal of Biomedical Science and Engineering 4:
692-698.
Ouellet, M., Mercier, S., Pelletier, I., Bounou, S., Roy, J., Hirabayashi,
J., Sato, S. & Tremblay, M.J. 2005. Galectin-1 acts as a soluble
host factor that promotes HIV-1 infectivity through stabilization of virus
attachment to host cells. Journal of Immunology 174(7):
4120-4126.
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X.,
Lan, L., Liang, H., Song, X. & Wu, M. 2022. Pseudomonas aeruginosa:
Pathogenesis, virulence factors, antibiotic resistance, interaction with host,
technology advances and emerging therapeutics. Signal Transduction and
Targeted Therapy 7: 199.
Russel, M., Whirlow, H., Sun, T.P. &
Webster, R.E. 1988. Low-frequency infection of F-bacteria by transducing
particles of filamentous bacteriophages. Journal of Bacteriology 170(11): 5312-6.
Santana, A.B., Souto,
B.S., de Melo Santos, N.C., Pereira, J.A., Tagliati, C.A., Novaes, R.D., Corsetti, P.P. & de Almeida, L.A.
2022. Murine response to the opportunistic bacterium Pseudomonas aeruginosa infection in gut dysbiosis caused by 5-fluorouracil
chemotherapy-induced mucositis. Life Sciences 307:
120890.
Shukla, S., Nayak, A., Sharma, R.K., Shukla, P.C. & Singh, R.V.
2022. Bacteriophages: A potential new therapeutic alternate to antibiotics to
treat chronic septic wounds in large animals. Indian Journal of Animal
Research 56(10): 1279-1282.
Sillankorva, S., Neubauer, P. & Azeredo, J.
2008. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnology 8: 79.
Sillankorva,
S., Oliveira, R., Vieira, M.J., Sutherland, I. & Azeredo,
J. 2004. Bacteriophage
Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20(3): 133-138.
Zhang, Y.H., Huang, X.H., Wong, W.L., Luo,
J.R., Guo, X.C., Liu, W., Hou,
J., She, M.T., Jiang, W.H., Sun, N. & Lu, Y.J. 2023.
A red fluorescent small-molecule for visualization of higher-order cyclic
dimeric guanosine monophosphate (c-di-GMP) structure in live bacterial cells
and real-time monitoring of biofilm formation on biotic and abiotic
surfaces. Sensors of Actuators B Chemistry 376: 132992.
Zhou,
F., Wang, D., Hu, J., Zhang, Y., Tan, B.K. & Lin, S. 2022. Control
measurements of Escherichia coli biofilm: A review. Foods 11(16):
2469.
*Corresponding
author; email: muhsinjamal@awkum.edu.pk
|