Sains Malaysiana 53(5)(2024): 1043-1054

http://doi.org/10.17576/jsm-2024-5305-06

 

Evaluation of the Bacteriophage MAC-1 Potential to Control Pseudomonas aeruginosa Planktonic Cells and Biofilms

(Penilaian Potensi Bakteriofag MAC-1 untuk Mengawal Sel Plankton Pseudomonas aeruginosa dan Biofilem)

 

MOAZ AQEEL1, SAYED MUHAMMAD ATA ULLAH SHAH BUKHARI2, HIDAYAT ULLAH5, TAHIR HUSSAIN3, AMAN ULLAH2, MUHSIN JAMAL3,*, MUHAMMAD ASIF NAWAZ4, SAADIA ANDLEEB1, KHURSHAID KHAN5, SIDRA PERVEZ6 & MUHAMMAD IMRAN7

 

1Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad-44000, Pakistan

2Department of Biological Sciences, National University of Medical Sciences, Rawalpindi-46000, Pakistan

3Department of Microbiology, Abdul Wali Khan University, Mardan -23200, Pakistan

4Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan

5Department of Zoology, Abdul Wali Khan University, Mardan -23200, Pakistan

6Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar-25000, Pakistan

7Department of Microbiology, University of Health Sciences, Lahore -54600, Pakistan

 

Received: 20 April 2023/Accepted: 19 March 2024

 

Abstract

Pseudomonas aeruginosa is a pathogenic bacterium that can be considered a high risk to human health due to its remarkable capacity to resist antibiotics, either intrinsically or following the acquisition of resistance genes. P. aeruginosa has been considered a major threat to human health as all the known remedies seem ineffective. Bacteriophages as a natural killer of bacteria can offer alternative therapy for antibiotics. The study aimed to isolate and characterize a lytic bacteriophage against P. aeruginosa (clinically resistant strain/superbug) and to investigate its lytic potential to control bacterial planktonic cells and their biofilms on stainless steel surfaces. A lytic bacteriophage known as MAC-1 was isolated from wastewater against the selected P. aeruginosa-2750 strain. Its host range was moderate and it only infected six isolates. Phage MAC-1 was characterized through transmission electron microscopy and was classified to the Siphoviridae family. It has good heat and pH stability. Its latent time was 24 min with a burst size of about 410 virions per cell. The phage MAC-1 efficacy was determined against P. aeruginosa planktonic cells and biofilms on metallic surfaces. Isolated phage MAC-1 demonstrated promising activity against bacterial planktonic cells as well as in reducing bacterial biofilm biomass formed in 96-well and on stainless steel plates. However, a phage cocktail may be used to avoid resistance and ensure complete eradication of bacterial biofilms.

 

Keywords: Bacteriophage; biofilm; cocktail; planktonic cells; Pseudomonas aeruginosa

 

Abstrak

Pseudomonas aeruginosa ialah bakteria patogen yang boleh dianggap berisiko tinggi kepada kesihatan manusia kerana keupayaannya yang luar biasa untuk menentang antibiotik, sama ada secara intrinsik atau berikutan pemerolehan gen rintangan. P. aeruginosa telah dianggap sebagai ancaman utama kepada kesihatan manusia kerana tidak menunjukkan kesan daripada semua ubat sedia ada. Bakteriofaj sebagai pembunuh bakteria semula jadi boleh menawarkan terapi alternatif untuk antibiotik. Kajian ini bertujuan untuk mengasingkan dan mencirikan bakteria lisis terhadap P. aeruginosa (superbug rintang klinikal) serta mengkaji potensi lisisnya untuk mengawal sel planktonik bakteria dan biofilemnya pada permukaan keluli tahan karat. Bakteria lisis yang dikenali sebagai MAC-1 telah dipencilkan daripada air sisa terhadap strain P. aeruginosa-2750 terpilih. Julat perumahnya adalah sederhana dan hanya menjangkiti enam pencilan. Faj MAC-1 telah dicirikan melalui mikroskop elektron transmisi dan dikelaskan kepada famili Siphoviridae. Ia mempunyai kestabilan haba dan pH yang baik. Masa pendamnya ialah 24 minit dengan saiz letusan kira-kira 410 virion per sel. Keberkesanan faj MAC-1 ditentukan terhadap sel planktonik P. aeruginosa dan biofilem pada permukaan logam. Faj terpencil MAC-1 menunjukkan aktiviti yang memberangsangkan terhadap sel planktonik bakteria dan juga dalam mengurangkan biojisim biofilem bakteria yang terbentuk dalam plat 96-telaga dan pada plat keluli tahan karat. Walau bagaimanapun, koktel faj boleh digunakan untuk mengelakkan kerintangan dan memastikan pembasmian lengkap biofilem bakteria.

 

Kata kunci: Bakteriofaj; biofilem; koktel; Pseudomonas aeruginosa; sel planktonik

 

REFERENCES

Adnan, M., Shah, M.R.A., Jamal, M., Jalil, F., Andleeb, S., Nawaz, M.A., Pervez, S., Hussain, T., Shah, I., Imran, M. & Kamil, A. 2020. Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals 63: 89-96.

Akram, M., Shahid, M. & Khan, A.U. 2007. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in JNMC Hospital Aligarh, India. Annals of Clinical Microbiology and Antimicrobials 6(1): 1-7.

Bobrov, A.G., Getnet, D., Swierczewski, B., Jacobs, A., Medina‐Rojas, M., Tyner, S., Watters, C. & Antonic, V. 2022. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military‐relevant animal infection models. Acta Pathologica, Microbiologica, et Immunologica Scandinvica 130(7): 436-457.

Capra, M.L., Quiberoni, A. & Reinheimer, J. 2006. Phages of Lactobacillus casei/paracasei: response to environmental factors and interaction with collection and commercial strains. Journal of Applied Microbiology 100: 334-342.

Cerca, N., Oliveira, R. & Azeredo, J. 2007. Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of Staphylococcus bacteriophage K. Letters in Applied Microbiology 45: 313-317.

Chadha, J., Harjai, K. & Chhibber, S. 2022. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: A chronicle through the perspective of quorum sensing. Environmental Microbiology 24(6): 2630-2656.

Chang, R.Y.K., Nang, S.C., Chan, H.K. & Li, J. 2022. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Advanced Drug Delivery Reviews 2022: 114378.

Chevallereau, A., Pons, B.J., van Houte, S. & Westra, E.R. 2022. Interactions between bacterial and phage communities in natural environments. Nature Reviews Microbiology 20(1): 49-62.

Chhibber, S., Kaur, T. & Kaur, S. 2014. Essential role of calcium in the infection process of broad‐spectrum methicillin‐resistant Staphylococcus aureus bacteriophage. Journal of Basic Microbiology 54(8): 775-780.

CLSI. 2020. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100.

Das, S. 2022. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydrate Polymers 2022: 119536.

Di Domenico, E.G., Oliva, A. & Guembe, M. 2022. The current knowledge on the pathogenesis of tissue and medical device-related biofilm infections. Microorganisms 10(7): 1259.

El-Telbany, M., Mohamed, A.A., Yahya, G., Abdelghafar, A., Abdel-Halim, M.S., Saber, S., Alfaleh, M.A., Mohamed, A.H., Abdelrahman, F., Fathey, H.A. & Ali, G.H. 2022. Combination of meropenem and zinc oxide nanoparticles; Antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics 11(10): 1374.

Figaj, D., Ambroziak, P., Rzepka, I. & Skórko-Glonek, J. 2023. SurA-like and Skp-like proteins as important virulence determinants of the Gram-negative bacterial pathogens. International Journal of Molecular Sciences 24(1): 295.

Fu, W., Forster, T., Mayer, O., Curtin, J.J., Lehman, S.M. & Donlan, R.M. 2010. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrobial Agents and Chemotherapy 54(1): 397-404.

Gill, J.J. & Hyman, P. 2010. Phage choice, isolation, and preparation for phage therapy. Current Pharmaceutical Biotechnology 11(1): 2-14.

Groleau, M.C., Taillefer, H., Vincent, A.T., Constant, P. & Déziel, E. 2022. Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches. Environmental Microbiology 24(3): 1062-1075.

Hyman, P. & Abedon, S.T. 2010. Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology 70: 217-248.

Jamal, M., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., Hussain, T., Ali, M. & Das, C.R. 2017. Isolation and characterization of a bacteriophage and its utilization against multi-drug resistant Pseudomonas aeruginosa-2995. Life Sciences 190: 21-28.

Jamal, M., Chaudhry, W.N., Hussain, T., Das, C.R. & Andleeb, S. 2015a. Characterization of new Myoviridae bacteriophage WZ1 against multi‐drug resistant (MDR) Shigella dysenteriaeJournal of Basic Microbiology 55(4): 420-431.

Jamal, M., Hussain, T., Das, C.R. & Andleeb, S. 2015b. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. Journal of Medical Microbiology 64(4): 454-462.

Jamal, M., Hussain, T., Das, C.R. & Andleeb, S. 2015c. Isolation and characterization of a Myoviridae MJ1 bacteriophage against multi-drug resistant Escherichia coli 3. Jundishapur Journal of Microbiology 8(11): e25917.

Jamal, M., Hussaina, T., Dasb, C. & Andleeba, S. 2015d. Inhibition of clinical multi-drug resistant Klebsiella pneumoniae biofilm by Siphoviridae bacteriophage Z. Science Letter 3(2): 122-126.

Jamal, M., Tasneem, U., Hussain, T. & Andleeb, S. 2015e. Bacterial biofilm: Its composition in formation and role in human infections. Research & Reviews: Journal of Microbiology and Biotechnology 4(3): 1-14.

Jeon, J., Park, J.H. & Yong, D. 2019. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiology 19(1): 70.

Karaca, B., Akcelik, N. & Akcelik, M. 2015. Effects of P22 bacteriophage on Salmonella enterica subsp. enterica serovar Typhimurium DMC4 strain biofilm formation and eradication. Archives of Biological Sciences 67(4): 1361-1367.

Karley, D., Shukla, S.K. & Rao, T.S. 2022. Microbiological assessment of spent nuclear fuel pools: An in-perspective review. Journal of Environmental Chemical Engineering 10(4): 108050.

Labrie, S.J., Samson, J.E. & Moineau, S. 2010. Bacteriophage resistance mechanisms. Nature Reviews Microbiology 8(5): 317-327.

Larson, E.L., Gomez-Duarte, C., Lee, L.V., Della-Latta, P., Kain, D.J. & Keswick, B.H. 2003. Microbial flora of hands of homemakers. American Journal of Infection Control 31(2): 72-79.

Latino, L., Midoux, C., Hauck, Y., Vergnaud, G. & Pourcel, C. 2016. Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosaMicrobiology 162(5): 748-763.

Lin, J., Du, F., Long, M. & Li, P. 2022. Limitations of phage therapy and corresponding optimization strategies: A review. Molecules 27(6): 1857.

Martins, W.M., Li, M., Sands, K., Lenzi, M.H., Portal, E., Mathias, J., Dantas, P.P., Migliavacca, R., Hunter, J.R., Medeiros, E.A. & Gales, A.C. 2022. Effective phage cocktail to combat the rising incidence of extensively drug-resistant Klebsiella pneumoniae sequence type 16. Emerging Microbes and Infections 11(1): 1015-1023.

Noritomi, H., Kai, R., Iwai, D., Tanaka, H., Kamiya, R., Tanaka, M., Muneki, K. & Kato, S. 2011. Increase in thermal stability of proteins adsorbed on biomass charcoal powder prepared from plant biomass wastes. Journal of Biomedical Science and Engineering 4: 692-698.

Ouellet, M., Mercier, S., Pelletier, I., Bounou, S., Roy, J., Hirabayashi, J., Sato, S. & Tremblay, M.J. 2005. Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. Journal of Immunology 174(7): 4120-4126.

Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X. & Wu, M. 2022. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy 7: 199.

Russel, M., Whirlow, H., Sun, T.P. & Webster, R.E. 1988. Low-frequency infection of F-bacteria by transducing particles of filamentous bacteriophages. Journal of Bacteriology 170(11): 5312-6.

Santana, A.B., Souto, B.S., de Melo Santos, N.C., Pereira, J.A., Tagliati, C.A., Novaes, R.D., Corsetti, P.P. & de Almeida, L.A. 2022. Murine response to the opportunistic bacterium Pseudomonas aeruginosa infection in gut dysbiosis caused by 5-fluorouracil chemotherapy-induced mucositisLife Sciences 307: 120890.

Shukla, S., Nayak, A., Sharma, R.K., Shukla, P.C. & Singh, R.V. 2022. Bacteriophages: A potential new therapeutic alternate to antibiotics to treat chronic septic wounds in large animals. Indian Journal of Animal Research 56(10): 1279-1282.

Sillankorva, S., Neubauer, P. & Azeredo, J. 2008. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnology 8: 79.

Sillankorva, S., Oliveira, R., Vieira, M.J., Sutherland, I. & Azeredo, J. 2004. Bacteriophage Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20(3): 133-138.

Zhang, Y.H., Huang, X.H., Wong, W.L., Luo, J.R., Guo, X.C., Liu, W., Hou, J., She, M.T., Jiang, W.H., Sun, N. & Lu, Y.J. 2023. A red fluorescent small-molecule for visualization of higher-order cyclic dimeric guanosine monophosphate (c-di-GMP) structure in live bacterial cells and real-time monitoring of biofilm formation on biotic and abiotic surfaces. Sensors of Actuators B Chemistry 376: 132992.

Zhou, F., Wang, D., Hu, J., Zhang, Y., Tan, B.K. & Lin, S. 2022. Control measurements of Escherichia coli biofilm: A review. Foods 11(16): 2469.

 

*Corresponding author; email: muhsinjamal@awkum.edu.pk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous